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Abstract

We consider operators with random potentials on graphs, such as the lattice
version of the random Schrödinger operator. The main result is a general bound
on the probabilities of simultaneous occurrence of eigenvalues in specified
distinct intervals, with the corresponding eigenfunctions being separately
localized within prescribed regions. The bound generalizes the Wegner
estimate on the density of states. The analysis proceeds through a new multi-
parameter spectral averaging principle.

PACS numbers: 02.30.Tb, 71.23.An
Mathematics Subject Classification: 47B80, 60K40

1. Introduction

The subject of this communication is general bounds for the joint distribution of eigenfunctions
of operators with random potential, in the discrete setting. After finding that a natural multi-
level extension of the Wegner bound on the density of states is not generally valid, we present a
corrected version which is. It consists of a general bound on the probabilities of simultaneous
occurrence of eigenvalues in distinct intervals, with the corresponding eigenfunctions being
separately localized within prescribed regions, in a sense made precise below. The bound is
derived through a suitable multi-parameter extension of the spectral averaging principle which
is a familiar, and useful, element of the mathematical theory of Anderson localization.

Wegner-type bounds are of relevance for the analysis of the extensions of the Schrödinger
evolution to nonlinear time evolutions and to interactive extensions of the one-particle model.
These are not discussed here, but let us note that such systems continue to attract attention,
with interesting results presented in [AF88, BW07, FKS] as well as in a number of works
which are currently in progress [FKS, CS].
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More explicitly, we consider random operators acting in the Hilbert space �2(�), with �

a finite set, of the form

H�(ω) = T + V (ω), (1.1)

where T is a fixed Hermitian operator and the randomness, represented by ω, enters only
through a diagonal matrix V (ω) = diag(Vx(ω))x∈�. Here ω is a variable taking values in a
probability space (�, P). The joint distribution of {Vx(ω)}x∈� induces a probability measure
on the space of realizations R

|�|. For convenience, and without loss of generality we identify
� with this space, with {Vx(ω)} given by the natural coordinates. Expectation values with
respect to the probability measure P will be denoted by E.

By default, it will subsequently be assumed here that the joint distribution of the potential
variables satisfies the following regularity condition:

Assumption R. For each site x ∈ �, the conditional probability distribution of Vx , conditioned
on {Vy}y �=x , is absolutely continuous with respect to the Lebesgue measure, and its density
(i.e. the corresponding Radon–Nikodym derivative) is uniformly bounded by a constant, ρ∞.

Among the general results which are known for such random operators, and which have
already played useful roles in the mathematical analysis of Anderson localization and of the
corresponding spectral statistics, are

(1) Spectral simplicity: with probability one H�(ω) has only simple, i.e., non-degenerate,
eigenvalues. (A proof which does not rely on the more involved Minami estimate is
spelled in appendix B.)

(2) The Wegner bound [Weg81]: the mean density of states is bounded by ρ∞. Equivalently,
for any energy interval I

P {σ(H�) ∩ I �= ∅} � E [Tr PI (H�)] � ρ∞|I ||�|, (1.2)

where σ is the spectrum of the operator, PI is the corresponding spectral projection, and
| · | denotes a set’s length, or ‘volume’, as appropriate.

(3) The Minami bound [Min96]: the probability of there being multiple eigenvalues in a small
energy range satisfies

P ({card{σ(H�) ∩ I} � 2}) � E [Tr PI (H)(Tr PI (H) − 1)]

� π2

2
ρ2

∞|I |2|�|2. (1.3)

(The statement had a one-dimensional precursor in [Mol81].)

These bounds were recently extended [GV07, BHS07] to

P ({card{σ(H�) ∩ I} � n}) � πn

n!
ρn

∞|I |n|�|n. (1.4)

Furthermore, in a work which was posted at the time of completion of this paper, the Minami
bound was given a new and more transparent derivation and some further extensions [CGK08].

At first glance, one could ask whether (1.4) is a special case of a more general valid bound
on the n-point density functions, of the form:

P
({σ(H�) ∩ Ij �= ∅ for all j = 1, . . . , k}) ??

� Cnρ
n
∞

k∏
j=1

|Ij ||�|, (1.5)

where {Ij } could be arbitrary intervals.
A bound like (1.5) could be of use, e.g., in estimating the probability that for an

a priori specified energy E there is a multi-state resonance, in the sense that the quantity
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∣∣E − ∑k
j=1 mjEj

∣∣ is small for some integer sequences {mj }. Questions of this kind are of
relevance for the nonlinear extension of the Schrödinger evolution which is studied in [FKS].

As it turns out, the bound suggested in (1.5) does not hold at the generality of the two
preceding statements. As the simple calculation which is demonstrated next shows, it is
already not valid for the 2×2 example. Nevertheless, a somewhat similar bound does hold for
disjoint energy intervals under the restriction that the eigenfunctions’ moduli are of sufficiently
different profiles. The precise statement, which is our main result, is presented in section 3.

2. A counterexample

While at first glance (1.5) may appear sensible, and even supported by the observation that for
random matrices the level interaction is repulsive, it is easily seen to be false. A counterexample
to (1.5) is found already in the context of 2 × 2 matrices.

In the two-dimensional space, a self-adjoint operator with random potential is given by a
2 × 2 self-adjoint matrix of the form:

H(ω) =
(

a + ω1 c

c∗ b + ω2

)
, (2.1)

with some a, b ∈ R and c ∈ C. The two eigenvalues of H(ω) are

E1/2(ω) = 1
2

(
ω1 + ω2 + a + b ±

√
(ω1 − ω2 + a − b)2 + 4|c|2), (2.2)

where one may note that the spectral gap satisfies: |E1(ω) − E2(ω)| � 2|c| for all ω ∈ R
2.

The determinant of the change of variables (ω1, ω2) → (E1, E2) is given by∣∣∣∣det

(
∂Ej (ω)

∂ωk

)∣∣∣∣ = |ω1 − ω2 + a − b|√
(ω1 − ω2 + a − b)2 + 4|c|2

=
√

(E1 − E2)2 − 4|c|2
|E1 − E2| (2.3)

with j, k ∈ {1, 2}. Hence, for ω1 and ω2 a pair of i.i.d. variables with a common density 
,
the probability density for the pair of eigenvalues p(E1, E2) (with E1 �= E2) is

p(E1, E2) =
∣∣∣∣det

(
∂Ej (ω)

∂ωk

)∣∣∣∣
−1


(ωj (E1, E2))

=

⎧⎪⎪⎨
⎪⎪⎩

|E1 − E2|√
(E1 − E2)2 − 4|c|2

2∏
j=1


(ωj (E1, E2)), |E1 − E2| > 2|c|

0, |E1 − E2| � 2|c|,
(2.4)

with ωj(E1, E2) determined by the relation (2.2).
The above density has the singularity of (|E1 − E2| − 2|c|)−1/2 at the edge of the spectral

gap, where |E1 −E2| = 2|c|. In effect, one could see here that the level repulsion is associated
with a ‘pile-up’ of the probability density at the edge of the gap which it creates.

Clearly, similar singularities in the two point function would be found in the more general
n × n situation whenever the system is decomposable with an isolated two-site subsystem.
However, it seems to be an interesting question whether for generic n×n matrices with random
potential the singularity is rounded off due to the larger number of random variables.

One may also note that while the above calculation contradicts (1.5), it implies that at
least in the 2 × 2 case the two point function satisfies a modified bound, which is obtained by
replacing |Ij |, on the right-hand side of (1.5), with max{|Ij |1/2, |Ij |}. It will be of interest to
clarify how far can such a bound be extended. Suitable generalizations could provide useful
information on the probabilities of multi-level resonances which are mentioned above.
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3. Bounds on the joint distribution of the eigenvalues

3.1. Statement of the main result

The ‘positive results’ which are presented here amount to bounds on the probabilities of
simultaneous occurrences of eigenvalues, in prescribed intervals, which are associated with
eigenfunctions of sufficiently distinct profiles. Following is the definition of that concept.

Definition 3.1. Normalized functions ψ1, . . . , ψn ∈ �2(�), with ‖ψj‖ = 1, are said to have
α-distinct profiles, for some α > 0, within sets B1, . . . , Bn ⊆ � if and only if∑

x1∈B1

· · ·
∑

xn∈Bn

∣∣det(|ψj(xk)|2)nj,k=1

∣∣ � αn. (3.1)

It may be noted that by the linearity of the determinant and the triangle inequality:
∑
x1∈B1

· · ·
∑

xn∈Bn

∣∣ det(|ψj(xk)|2)nj,k=1

∣∣ �
∣∣∣det

(〈ψj , 1Bk
ψj 〉

)n

j,k=1

∣∣∣ , (3.2)

where 1D stands for the indicator function of the set D. Hence, a sufficient condition for (3.1)
is that the row (or column) vectors in the (substochastic) matrix of occupation probabilities(〈ψj , 1Bk

ψj 〉
)n

j,k=1 span a parallelepiped of volume at least αn.
We shall now consider the events:

Eα(I1, . . . , In;B1, . . . , Bn)

:=
{
ω

∣∣∣∣H�(ω) has eigenvalues E1 ∈ I1, . . . , En ∈ In whose eigen-
functions have α-distinct profiles, within sets B1, . . . , Bn,

}
(3.3)

with I1, . . . , In ⊆ R a collection of Borel sets, and B1, . . . , Bn ⊆ �.
Proven below is the following statement.

Theorem 3.1. For operators with random potential, as in (1.1), whose probability distribution
satisfies the regularity assumption R, the probabilities of the events defined in (3.3) satisfy

P (Eα(I1. . . . , In;B1, . . . , Bn)) � n!

αn
ρn

∞
n∏

j=1

|Ij ||Bj |. (3.4)

Concerning the uses of this result, it may be noted that throughout the localization regime,
where the eigenfunctions are each localized in some region of—roughly—the localization
length, condition (3.1) would be satisfied by eigenfunctions of separate supports. Theorem 3.1
can therefore be used to bound the probabilities of eigenfunctions in prescribed intervals whose
eigenfunctions do not overlap in space. Regrettably, the results presented here do not address
the corresponding question for eigenvalues with overlapping eigenfunctions. One may wonder
whether even in that case the eigenfunctions’ profiles should typically be distinguishable, in
the sense of (3.1). Such a result could extend the applicability of theorem 3.1.

3.2. Multi-parameter spectral averaging

To prove theorem 3.1, we first establish the following estimate.
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Lemma 3.2 (generalized spectral averaging). For operators with random potential, as in
(1.1), whose probability distribution satisfies the assumption R, and any collection of intervals
I1, . . . , In and sites x1, . . . , xn ∈ �:

E
[∣∣det

(〈
δxk

, PIj
(H�)δxk

〉)n

j,k=1

∣∣] � n!
n
∞

n∏
j=1

|Ij |. (3.5)

The term by which we refer to this statement is motivated by the observation that the case
n = 1 yields the known spectral averaging principle:

E [〈δx, PI (H�)δx〉] � 
∞|I |, (3.6)

from which the Wegner estimate (1.2) readily follows. The proof of the more general statement
is based on an elementary change of variable calculation, combined with input from algebraic
geometry. The latter is needed for a bound (which is rather natural) on a relevant multiplicity
factor.

Proof of lemma 3.2. We shall first derive (3.5) under the additional restriction to the event:

J (I1, . . . , In) :=
{
ω

∣∣∣∣The spectrum of H�(ω) includes exactly one
eigenvalue in each of the intervals I1, . . . , In

}
. (3.7)

For ω ∈ J (I1, . . . , In) the determinant in the left-hand side of (3.5) reduces to

D(E;�) := det n×n(|ψj(xk)|2), � := {x1, . . . , xn}, (3.8)

where E := (E1, . . . , En) is the set of eigenvalues which occur in the indicated intervals,
and ψj are the normalized eigenvectors of H�(ω) corresponding to the (uniquely defined)
eigenvalues Ej ∈ Ij . Thus, our first goal is to establish the bound

E
[∣∣D(E;�)

∣∣1JI1 ,...,In

]
� n!
n

∞
n∏

j=1

|Ij |, (3.9)

where 1J ≡ 1J (ω) denotes the indicator function of the event J ≡ J (I1, . . . , In).
The expectation value in (3.9) can be calculated as the average of the conditional

expectation of the same quantity conditioned on V�\� := {Vx}x �∈� , i.e.

E[|D(E;�)|1J ] =
∫

R
|�\�|

[∫
R

|�|
1J |D(E;�)|μ(dV�|V�\�)

]
P(dV�\�). (3.10)

Thus, under the assumption R on the joint distribution of {Vx}, we have

E[|D(E;�)|1J ] � 
n
∞ sup

V�\�

∫
S

|D(E;�)| dV�, (3.11)

where S is the following subset of the section of J at the specified V�\� :

S := {V�|V ≡ (V�, V�\�) ∈ J and D(E;�) �= 0}. (3.12)

The integral on the right-hand side of (3.11) may be conveniently expressed through the change
of variables

V� := (Vx1 , . . . , Vxn
) −→ E := (E1, . . . , En), (3.13)

which is to be understood as performed at fixed V�\� . Standard perturbation theory [Ka66]
implies that the set J ⊂ R

|�| is covered by open sets within each of which Ej , are defined
as single-valued analytic functions of V� , with derivatives given by the Feynman–Hellmann
formula:

∂Ej

∂Vxk

= |ψj(xk)|2. (3.14)

5
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Hence, the Jacobian for the coordinate change is given by

det

(
∂{E1, . . . , En}
∂{Vx1 , . . . , Vxn

}
)

= D(E;�). (3.15)

The section S is covered by open sets on which D(E;�) �= 0, for which transformation (3.13)
is locally bijective. Globally, the mapping is not 1 − 1, and the correct change of variables
formula is ∫

S
|D(E;�)|dV� =

∫
I1×...×In

N(E;�) dE (3.16)

with the multiplicity factor:

N(E;�) := card{V�|E are eigenvalues of H�(V�, V�\�) and D(E;�) �= 0}. (3.17)

The factor N(E;�) counts the number of simultaneous solutions, for V� , of the set of
equations (at fixed V�\�):

PEj

(
Vx1 , . . . , Vxn

) = 0, j = 1, . . . , n, (3.18)

where PE

(
Vx1 , . . . , Vxn

)
is the characteristic polynomial:

PE

(
Vx1 , . . . , Vxn

) ≡ P
(
Vx1 , . . . , Vxn

;E
)

:= det(H� − E). (3.19)

The number of solutions of a system of algebraic equations is a classical problem of algebraic
geometry (for which it is the size of a zero-dimensional algebraic variety, defined by (3.18)).
A rather general answer is provided by the so-called Bezout’s theory. However, a simplifying
observation is that in the case of interest for us the polynomials PE

(
Vx1 , . . . , Vxn

)
are linear

in each of the Vxj
variables. To form a guess as to what may be the number of solutions

for such systems, one may observe that the answer is trivial if the non-random term in
H�(ω) = T + V (ω) is a diagonal matrix diag

{
Tx1 , . . . , Txn

}
. In this case, equations (3.18)

are simultaneously satisfied if and only if
{
Txj

+ Vxj

}
j=1,...,n

coincide with a permutation of
{Ej }j=1,...,n, and thus N(E;�) � n!.

As it turns out, by a theorem due to D Bernstein2 also in the more general case which is
of interest to us the number of solutions of the system (3.18) satisfies

N(E;�) � n!. (3.20)

The applicable theorem is proposition 1 which is presented in appendix A. To apply it, we

need to check that for the counted solutions det
( ∂PEj

∂Vxk

) �= 0. For that we note

∂P (V�;Ej)

∂Vxk

= ∂

∂Vxk

∣∣∣∣
E=Ej

∏
m

[Em(V�) − E] = ∂Ej

∂Vxk

∏
Em∈σ(H�)

m�=j

(Em − Ej). (3.21)

Since the last product is non-zero for all V ∈ J and j = 1, . . . , n, condition (A.3) is satisfied
on S.

The above considerations prove (3.9), which differs from (3.5) mainly in the presence of
the additional constraint that each interval Ij includes exactly one eigenvalue of H�. We shall
now show that (3.5) follows. For that, consider a partition of ∪j Ij into a finite collection,
Cε, of disjoint sub-intervals whose length does not exceed ε. One may represent each of the
intervals Ij as a disjoint union Ij = ∪�j (ε)

m=1Im
j of elements of such a partition, i.e. with each

2 We thank J Kollár for help with the reference.
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{
Im
j

}
in Cε (if the sets Ij are not pairwise disjoint some elements of Cε will be called upon

more than once). By the linearity of the determinant

det
(〈
δxk

, PIj
(H�)δxk

〉) =
�1(ε)∑
m1=1

· · ·
�n(ε)∑
mn=1

det
(〈
δxk

, P
I

mj

j

(H�)δxk

〉)
. (3.22)

The sum can be restricted to the case that I
m1
1 , . . . , I

mn
n are disjoint, since otherwise the

determinant vanishes.
Using the fact that the determinant on the left is bounded by one, we can estimate

E
[∣∣det

(〈
δxk

, PIj
(H�)δxk

〉)∣∣] � P

{
In at least one of the elements of Cε

H� has two or more eigenvalues

}

+
∑

m1,...,mn

E
[∣∣det

(〈
δxk

, P
I

mj

j

(H�)δxk

)〉∣∣1J (I
m1
1 ,...,I

mn
n )

]
, (3.23)

where the summation range is as in (3.22). We shall now take the limit ε → 0. Since the
eigenvalues of H� are almost surely simple (lemma B.1), the dominated convergence theorem
implies that in that limit the first term vanishes. Applying (3.9) to the remaining terms one
gets

E
(∣∣det

( 〈
δxk

, PIj
(H�)δxk

〉 )∣∣) � lim
ε→0

�1(ε)∑
m1=1

· · ·
�n(ε)∑
mn=1

n!ρn
∞

∏
j

∣∣Imj

j

∣∣

≡ n!ρn
∞

∏
j

|Ij | (3.24)

which yields (3.5). �

3.3. Proof of main result

Proof of theorem 3.1. Using the limiting argument employed at the end of the proof of
lemma 3.2, one shows that it is sufficient to bound the probability of Eα ∩ J , where J
was defined in (3.7). Using the assumption on the normalized eigenfunctions ψ1, . . . , ψn

corresponding to E1 ∈ I1, . . . , En ∈ In, we then estimate

P (Eα(I1, . . . , In;B1, . . . , Bn) ∩ J (I1, . . . , In))

� 1

αn

∑
x1∈B1

. . .
∑

xn∈Bn

E[|det(|ψj(xk)|2)|1J (I1,...,In)]

� α−nn!
n
∞

n∏
j=1

|Ij ||Bj |, (3.25)

where the last inequality is due to (3.9). �

Appendix A. Counting solutions of a system of polynomial equations

In the proof of lemma 3.2, for the bound (3.20) we invoked the following general result.

Proposition A.1 (special case of a theorem by D Bernstein). Let Pj , j = 1, . . . , n be
polynomials in n variables, σ = (σ1, . . . , σn) ∈ C

n, which are linear in each variable, i.e.,
are of the form

Pj (σ) =
∑

k∈{0,1}n
cj (k)σ

k1
1 · · · σ kn

k , (A.1)

7
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with cj (k) ∈ C which are non-zero only if km = 0, 1. Then the number of isolated solutions
of the system

Pj (σ) = 0, for all j ∈ {1, . . . , n} (A.2)

is at most n!. Moreover, each solution σ at which

det

(
∂Pj (σ)

∂σk

)n

j,k=1

�= 0, (A.3)

is isolated.

The first part is a special case of [CLS91, theorem 5.4]. In case the solution is not isolated,
there exists locally a differentiable curve s �→ σ(s) such that for all j = 1, . . . , n

0 = dPj (σ(s))

ds
=

n∑
k=1

∂Pj (σ(s))

∂σk

dσk(s)

ds
. (A.4)

This contradicts assumption (A.3), which implies that the matrix of partial derivatives has no
zero eigenvalue.

Appendix B. Simplicity of the spectrum

In our discussion it was convenient to know that the spectrum of an operator with random
potential is almost surely non-degenerate. While this assertion is among the consequence of
the Minami bound, for completeness we present here also a direct and elementary proof.

Lemma B.1. Let H�(ω) be an operator in �(�)2, for some finite region |�|, with a random
potential such that for each x ∈ � the conditional distribution of Vx(ω), conditioned on
{Vy(ω)}y∈{x}c , is almost surely continuous. Then for almost all ω the spectrum of H�(ω) has
only simple eigenvalues.

Proof of lemma B.1. Let ψ1, . . . , ψ|�| be an orthonormal basis of eigenfunctions of H� with
corresponding eigenvalues denoted by E1, . . . , E|�|. Consider the self-adjoint operator

M� := (H� ⊗ 1 − 1 ⊗ H�)2

on the subspace H− of antisymmetric functions within the product space �2(�) ⊗ �2(�). It is
straightforward to check that the orthonormal basis given by

�−
jk := 1√

2
(ψj ⊗ ψk − ψk ⊗ ψj), j < k (B.1)

constitutes an eigenbasis with M��−
jk = (Ej − Ek)

2�−
jk . The simplicity of the spectrum of

H� is therefore equivalent to M� being almost surely invertible on H−, i.e.,

det M� > 0. (B.2)

For a proof of this assertion, we consider the
(|�|

2

)2
matrix elements given by〈

δ−
x ′y ′ ,M�δ−

xy

〉
, δ−

xy := 1√
2
(δx ⊗ δy − δy ⊗ δx) (B.3)

associated with the antisymmetrized position basis of H−, and study their dependence on a
single random variable, say Vx . Only |�| − 1 rows (and columns) of the matrix depend on
Vx . In these rows, the diagonal matrix elements, with x = x ′ and y = y ′, depend on Vx

quadratically, while the diagonal elements are linear in Vx .
Hence, Vx �→ det M� is a polynomial of degree at most |�|. Thus, we have the following

dichotomy: the characteristic polynomial has either at most |�| isolated zeros or is independent

8
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of Vx . In the first case, the conditional probability that det M� = 0, conditioned on {Vy}y �=x ,
vanishes, since the distribution of Vx is assumed to be continuous with respect to Lebesgue
measure. In the second case, one may reduce the site x from � by taking the limit Vx → ∞.
In this limit H� → H�\{x}⊕∞. Since det M� does not diverge in this limit, one may conclude
that det M�\{0} = 0, and the argument may be repeated for the smaller set. In case |�| = 1
condition (B.2) is trivially satisfied. This completes the proof. �
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